
International Journal of Computer Trends and Technology Volume 72 Issue 11, 165-171, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P118 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

End-to-End MLOps for Scalable Model Deployment:

Engineering Best Practices for Efficient and Reliable

Machine Learning Systems

Koushik Balaji Venkatesan

Independent Researcher, Seattle, WA, USA.

Corresponding Author : koushikbalaji.venkatesan@gmail.com

Received: 04 October 2024 Revised: 05 November 2024 Accepted: 24 November 2024 Published: 30 November 2024

Abstract - Machine Learning Operations (MLOps) help integrate machine learning model development with production

deployment using best practices from software engineering. The machine learning life cycle brings unique problems, and this

paper outlines possible approaches to address and fix them. Key MLOps practices are reviewed, focusing on Continuous

Integration and Continuous Deployment (CI/CD), automated testing, and adaptive scaling strategies. Techniques for deploying

models based on latency and traffic demands are explored, including traffic routing and shadow deployments. Advanced

strategies such as canary releases, A/B testing, automated monitoring and retraining are also discussed. The goal is for

organizations to increase reliability, reduce downtime, create scalable, robust ML pipelines, and accelerate innovation by

incorporating engineering best practices.

Keywords - CI/CD, Load balancing, Machine learning, MLOps, Shadow testing.

1. Introduction
Machine learning is rapidly transforming and enabling

industries to make meaningful predictions and gain data-

driven insights for personalized recommendations, real-time

fraud prevention, predictive maintenance, autonomous

driving, and more. Training and deploying machine learning

models at scale can come with unique problems, and MLOps

is a tailored version of DevOps (Developer Operations) meant

to tackle them. Continuous updates, quality control, and

scaling are vital for real-world applications, and MLOps

emphasizes automation and monitoring to achieve that.

Deploying ML models into production is a complex

process beyond model development. Unlike traditional

applications, ML models have a critical dependency on data,

and a drift in data can cause unintended effects, making

monitoring and updating crucial. Models need to be

periodically retrained to maintain quality, adding complexity

to the deployment pipeline.

Resource constraints can make it challenging for some

types of models that require a lot of computing resources or

applications that need real-time results for high traffic. The

scope and objective of this article are to provide best practices

for setting up scalable MLOps pipelines, focusing on

incorporating engineering practices into model development,

automated deployment, monitoring, and scaling.

2. Foundations of the MLOps Pipeline
2.1. Key Stages of MLOps

2.1.1. Data Management

Machine learning model performance relies on data, and

data freshness is critical for model training and retraining.

Data versioning helps keep track of various versions of data

on which the model is trained. Consider tools such as DVC to

maintain consistency. It is recommended to maintain robust

preprocessing pipelines that can preprocess data into a format

that the model needs, ensuring that the input data is clean,

consistent, and free of anomalies. Look for features that

improve model performance and explainability. Features that

can lead to overfitting or data leakage should be avoided.

2.1.2. Model Training and Validation

Orchestrated training pipelines minimize manual work

and allow rapid iteration. Consider tools such as MLFlow or

SageMaker pipelines to automate end-to-end training

workflows. Implement distributed training frameworks for

large datasets and complex models to leverage multiple GPUs

or TPUs. Validate models across a range of metrics, including

accuracy, precision, recall, and latency, and run periodic

stress/load tests to ensure the system behaves as expected at

scale.

2.1.3. Deployment Automation

Automating deployments helps save engineers time and

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Koushik Balaji Venkatesan / IJCTT, 72(11), 165-171, 2024

166

avoid mistakes in the process. There can be challenges when

models are expected to run in different environments, such as

Windows, Linux, etc. Docker and Kubernetes are good

solutions for deploying models consistently across different

platforms. CI/CD pipelines help take all the heavy lifting

between development and deployment from engineers. It

helps manage different code versions, run automated

integration and load tests, and deploy in different pre-

production environments to analyze model performance and

develop various deployment strategies. CI/CD pipeline tools

like Jenkins or GitLab CI help streamline the model

development life cycle.

2.1.4. Monitoring and Continuous Feedback

Once deployed in production, monitoring provides

visibility into how a model performs in production.

Monitoring for input data drift and ML output results is crucial

to ensure models stay performant and fresh. Various

performance metrics, such as latency, throughput, accuracy,

drift, and infrastructure metrics, such as CPU/memory, need

to be monitored. Alerts should be configured to change trends

in any of these metrics. Also, consider adding custom metrics

and developing real-time dashboards that help engineers gain

insights into model performance. Continuous feedback from

real-world performances of these models helps detect issues

early, enhance user satisfaction, and improve model

performance.

Fig. 1 Different stages of MLOps lifecycle

3. CI/CD Pipelines for Machine Learning
3.1. Continuous Integration for ML Models

3.1.1. Data Validation

Model training data needs to be consistent and clean.

Hence, data validation checks and schema validation checks

are quite important. Appropriate alarms should be raised if

necessary checks were to fail.

3.1.2. Version Control and Dependency Management

Reproducibility and rollback capabilities are crucial for

any software, and they become more important for critical

services that handle high traffic with little to no room for

failures. Tools such as Git help add version control to various

changes made to the model over time. Solutions such as DVC

(Data Version Control) help keep track of different versions

of data to help with rollback and investigation.

3.1.3. Automated Testing

Like any good software, testing is paramount for ML

models as well. It is good to incorporate various testing

strategies for software development into model development

and add tests specific to the model. Unit tests, especially for

data transformation functions, help discover errors during

development and ensure regression is not introduced for new

changes. Integration tests for the end-to-end pipeline make

sure individual components are working fine. Load tests help

stress test the model and the deployment infrastructure to

confirm that it is resilient during traffic surges. Model

validation tests using thresholds for performance metrics help

detect issues in newer model versions.

3.2. Continuous Deployment (CD)

3.2.1. Blue Green Deployment

Blue Green Deployment maintains two identical

environments, one running the current production version of

the model and the other running the new version that’s about

to be rolled out. Traffic is switched all at once from blue to

green once the new model is performing as expected. This

helps reduce downtime and enable quick rollbacks. This is a

good choice for straightforward, low-risk updates and

enabling quick rollbacks. It is also a good choice for

straightforward, low-risk updates.

3.2.2. Canary Release

Canary deployment, like Blue-Green deployment, will

have 2 identical environments running different versions of

the model, but the newer model is only initially exposed to a

small set of users. Depending on how that goes, traffic is

slowly dialed up all the way to 100% for the new model. This

helps limit the blast radius to a smaller subset of users, and

rolling back to older models can also be done quickly.

3.2.3. Shadow Deployment

Shadow deployment is a process where a new potential

model gets a copy of the same production traffic to process

messages, and results are analyzed and compared against the

production model.

3.2.4. A/B Testing and Traffic Dial-Up Control

A/B testing is a method to compare 2 different models by

splitting traffic between both models and comparing their

performances in live environments. There are various

strategies for choosing the percentage of traffic to send to the

new model version. One popular option in Meta is to roll out

Planning and

Data

Gathering

Continuous

Monitoring

and Feedback

Model

Development

Model

Deployment

Model

Validation

Koushik Balaji Venkatesan / IJCTT, 72(11), 165-171, 2024

167

new features to internal users first, then to a small group of

external users, and then eventually to all users. This keeps risk

to a minimum and allows for quick mitigation of issues. New

features can also be rolled out to certain geographic locations

before being made available nationwide or worldwide.

3.3. Automated Retraining

Automated retraining of ML models is often overlooked

but important for real-world systems. When set up correctly,

it can dramatically reduce the scope for manual interventions

and help keep the model fresh and reliable despite drifts in

data. Pipelines need to be set up, such as a significant drop in

performance of the existing model or a data distribution shift

that automatically triggers retraining of the existing model.

Automated training pipelines can manage model revision, data

revision, testing, and deployment, allowing continuous

updates.

4. Types of Models Based on Invocation Patterns
4.1. Batch Processing Models

Batch models are suitable when model outputs are

expected periodically rather than in real-time. They will be set

to run at different intervals, like twice a day, daily, weekly,

etc., and usually, a process will be responsible for

accumulating requests during that window and invoking the

model. Suppose an online retailer wants to make weekly

recommendations on products to buy for their customers;

batch processing would be an ideal approach. Predictive

maintenance processes run daily to predict machines likely to

fail, which is another good example.

4.2. Synchronous Models

Synchronous, real-time models are suited for processes

with minimal response latency. This also means that the caller

usually waits for a response from the model before proceeding

with the rest of their processes. Failure handling is important

in such scenarios since failing fast is more desirable than

taking more time than expected and succeeding. Fraud

prevention for financial transactions is an example of

synchronous processing where responses are expected in real-

time, within a few seconds. Voice assistants are another great

example of models that need to be synchronous since users

would expect immediate feedback.

4.3. Asynchronous Models

Asynchronous models are ideal for situations where

immediate response is not required and in cases where clients

want a non-blocking mechanism. The process usually invokes

the model with the given output and lets the model notify the

invoker once the results are available. Requests are usually

queued, and the model processes them in FIFO order.

Since they do not need to meet low latency requirements,

they can run at lower priority, optimizing resources and costs.

Content moderation on platforms like Facebook and TikTok

usually uses async models to analyze images, videos, and text

for potentially harmful content. E-commerce and financial

institutions use async models to generate insights on customer

behavior for targeted marketing campaigns.

5. Scaling and Load Management in Model

Serving
5.1. Auto Scaling Strategies

5.1.1. Horizontal Scaling

Horizontal scaling is an approach in which instances are

added to the production environment based on traffic

demands, and users pay only for what they use.

5.1.2. Vertical Scaling

Vertical scaling is a strategy where more memory and/or

processing power is added to individual instances to handle

high-load requests.

5.1.3. Dynamic Scaling Policies

An auto-scaling policy to scale based on various metrics

such as memory, CPU, and number of requests is

recommended. This optimizes resource usage since it scales

up and down as demand fluctuates, and most cloud providers

charge only when a particular resource is being used.

5.2. Optimizing for Low Latency

5.2.1. Edge Computing

Edge computing is a mechanism where ML models are

run on devices close to end users, like IoT devices,

smartphones, or edge servers. This helps in reducing latency,

data privacy, and cost efficiency since data does not have to

be sent to a centralized cloud infrastructure. Edge computing

is a popular option for autonomous vehicles that need to

process enormous amounts of data quickly to make instant

decisions.

5.2.2. Caching and Pre-Computation

Caching is another good strategy to store frequently used

results without having to make redundant operations and

improve response times. Various caching strategies dictate

when to store and delete data from the cache. Batch processing

is an example where model results are generated in batches

and stored in a caching layer that is available to be consumed

by clients. Frequently used features are cached in some cases

instead of having to recalculate features for every input.

5.3. Concurrency Management and Load Balancing

5.3.1. Concurrency limits

Consider limiting the number of concurrent requests

handled by individual instances so throttling can be avoided,

and that performance does not degrade over time.

5.3.2. Load Balancing

Load balancing is critical for environments where ML

models are used in high-traffic environments. This ensures

efficient distribution of requests across multiple instances,

thereby minimizing latency, improving performance, and

Koushik Balaji Venkatesan / IJCTT, 72(11), 165-171, 2024

168

reducing single points of failure. There are various load

balancing strategies, such as round-robin load balancing,

where requests are distributed sequentially in a circular order

among instances with similar processing power. Serverless

load balancing is a popular option for highly fluctuating

lightweight workloads. AWS Lambda and Google Cloud

Functions are some services that offer serverless

infrastructure.

6. Monitoring, Logging, and Alerting in

Production
6.1. Model Performance and Monitoring

6.1.1. Data and Prediction Drift Detection

Detecting drift in input data and model predictions is

important to maintain long-term model performance.

Statistical methods such as the Population Stability Index

(PSI) can be used to identify changes in distribution.

Additionally, automated monitoring tools can be configured

to trigger alerts when alarming deviations are detected,

ensuring timely intervention and model retraining.

6.1.2. Real-Time Metrics Collection

Exposing and tracking real-time metrics such as latency,

accuracy, and error rates is important to maintain a model in

production. Tools such as AWS CloudWatch and Prometheus

can be used for metric visualization and analysis.

Incorporating metrics such as throughput, resource utilization,

and response times can help proactively identify bottlenecks

and performance degradation.

6.2. Operational Metrics and Alarms

Infrastructure metrics such as CPU/Memory and GPU

consumption should be tracked to understand usage patterns,

optimize model deployments, and be cost-efficient. It is highly

recommended that alert or alarm systems be set up to track

important metrics and ensure they are within an expected

range. This should also be integrated with an incident

management system for manual intervention and quicker issue

resolution.

7. Case Study: Synchronous Model Handling

with Production and Shadow Deployments
7.1. Example Setup

Let us consider an e-commerce platform that relies on

online models to recommend products, personalize search

results, and block fraudulent transactions in real-time. Given

the high traffic and low latency demands, the company uses

synchronous models for recommendation and fraud detection

while using asynchronous models to personalize website

content based on user behavior.

To continuously improve model performance, they would

need an automated mechanism to validate and deploy new

models without affecting existing customers. A shadow

deployment strategy sounds like a fitting approach for this use

case.

7.2. Requirements and Challenges

7.2.1. Low Latency Requirements

The fraud detection models needed to respond within 50

milliseconds so that user experience is not affected and to keep

bad actors from doing fraudulent things. Longer delays can

affect checkout, possibly forcing customers to abandon their

carts.

7.2.2. Frequent Model updates

Fraudulent activities are evolving as fraudsters find new

opportunities to exploit. Fraud detection strategies must

constantly adapt to changing patterns and require consistent

model updates.

7.2.3. Model Validation in Real-Time

Since it is hard for them to reproduce production traffic in

other environments, they need a safe way to validate new

models at 100% production traffic without affecting user

experience. Analysis should be performed on the predictions

from the model under validation and compared with the

existing production model.

7.2.4. Scalability Under High Traffic

Transactions can exceed 10,000 requests per second,

especially during peak shopping seasons. Both the production

and shadow models need to be supported by an infrastructure

that can handle traffic surges.

7.2.5. Cost Constraints for the Infrastructure

The company would always need to maintain 2 different

models at production traffic to keep up with changing patterns

constantly. That would mean twice the storage and

infrastructure cost. Deployment strategies and resource usage

should be optimized for cost to meet cost targets. Resources

should be scaled down during non-peak hours, and their

infrastructure should not be overallocated with resources that

are not being used.

7.3. Solution: Shadow Deployment and Real-Time

Monitoring

7.3.1. Primary Production Model

This is the stable version of the model that has been

serving production requests and has proved to respond with

low latency under high traffic. This is being constantly

monitored for performance drifts as well as errors.

7.3.2. Shadow Model

A newer version of the model that’s deployed in a shadow

environment receives 100% of production traffic. Results

from this model will not be hooked to the production flow and

will not affect end customers in any way. Engineers and

scientists will monitor performance closely, evaluating it

under real-world conditions.

7.3.3. Traffic Routing and Duplication

The load balancer that helps divert traffic to appropriate

Koushik Balaji Venkatesan / IJCTT, 72(11), 165-171, 2024

169

instances hosting the production model is configured to

duplicate all traffic and send it to the shadow environment.

7.3.4. Automated Metric Collection

Key metrics such as accuracy, latency, error rates, and

resource usage metrics are all emitted and tracked across both

models. Engineers can directly compare the performance of

new vs. old models to make an informed decision on

promoting newer versions of the model.

7.3.5. Real-Time Monitoring and Alerts

Dashboards are configured to monitor critical metrics for

both models. Alarms are configured, looking at various

metrics and notifying operations anytime there is an anomaly

or a spike in error rates. Confidence thresholds are set on

performance expectations for the new model, such as

matching production latency with a 10% tolerance and

maintaining similar accuracy.

7.3.6. Gradual Dial-up

Once shadow model results are validated and it looks

good to be promoted as the production model, the company

decided to dial up the traffic sent to the newer model

gradually. They start with 10% of live production traffic sent

to the shadow model, while the remaining 90% goes to the

existing production model. Eventually, the shadow model gets

all 100% of production traffic, and the production model is

kept in reserve only for cases where a rollback is needed.

7.4. Results

7.4.1. Improved Model Validation and Real-Time Testing

Shadow deployments helped the company validate new

models on live production traffic without risking customer

experience. Engineers and scientists were able to validate and

gain insights into the new model’s performance in production

conditions and look for issues such as drift, decay, or

engineering bugs before a full launch.

7.4.2. Reduction in Rollback Incidents

Rollback incidents would have reduced considerably

since there are much fewer surprises during a production

deployment. Changes go through rigorous testing in lower

environments and shadow testing with production traffic. The

new shadow model is constantly monitored for output, trends,

and metrics such as latency to ensure they are within the

expected range.

7.4.3. Data-Driven Decision Making

Based on results from shadow deployments, engineers

can make informed decisions about the type of instances to

use, scaling needs, meeting requirements, etc., while science

can gain insights on model performance, feature selection for

newer models, hyperparameters, etc. Because of the gradual

dial-up, stakeholders can identify and compare the affected

population to the existing population to generate meaningful

insights. Dial-up also helps us take a conservative step towards

large rollouts, and the company can quickly dial down if they

see unintended results.

7.5. Key Takeaways

7.5.1. Continuous Model Improvement

The company notices that developing and deploying

features takes much less time. New fraud detection strategies

or recommendation models are safely tested without risking

customer experience. This helps them quickly leverage more

performant models to keep up with the competition.

Fig. 2 Architectural overview from the case study

Model

Development
Unit Testing

Integration

Testing

Model Validation

in Non Prod

Environments

Shadow

Deployment

Analysis and

Validation

Production

Deployment

Load Balancer
Requests/API

End Users

Continuous Monitoring and Feedback

Koushik Balaji Venkatesan / IJCTT, 72(11), 165-171, 2024

170

7.5.2. Operational Efficiency and Scalability

Thanks to effective load-balancing strategies to distribute

traffic, infrastructure usage is optimized for peak times. Most

cloud providers, like AWS, Azure, etc., provide options to pay

only for what you use, so the company benefits from using

resources appropriately based on varying traffic conditions.

7.6. Lessons Learned

7.6.1. Establish Clear Success Metrics

It is important to identify specific thresholds for metrics

such as latency, accuracy, and resource usage to track the

existing production model’s performance and to decide when

a shadow model is ready for production.

7.6.2. Use Automated Monitoring and Alerts

Real-time dashboards are crucial for operations and

engineers to monitor performance and detect performance

issues early. It is important to configure automated alerts so

teams are notified immediately of issues.

7.6.3. Gradual Deployment

Shadow results showed that the new model’s

performance was as expected. The company has gradually

deployed the new model into different geographic locations to

help mitigate risk. This also helped them gain insights into

model performance differences between customers using the

new and existing models. These effective deployment and

validation strategies allowed the company to achieve low

latency and high reliability in fraud detection and

recommendation services. They maintain an agile

development model, constantly improving their results

without sacrificing customer experience.

8. Conclusion
8.1. Summary of Key Points

This paper depicts some effective engineering practices

that allow safe and efficient scaling of machine learning

models. It focuses on the CI/CD pipeline, testing automation,

efficient deployment strategies, and adaptive scaling

techniques. MLOps best practices will make an organization’s

model development life cycle easier. This enables them to

deploy low-latency models serving high traffic with much-

reduced deployment times, improving their reliability and

customer experience. Techniques that include shadow

deployment, gradual dial-up, traffic routing, and load

balancing enable teams to validate model updates against

production traffic safely. With a well-engineered MLOps

framework, teams can speed up their model development and

release cycle to reduce the risk of failures and ensure that the

models remain aligned with business goals.

8.2. Future Trends in MLOps

As the adoption of machine learning continues to expand

within organizations, MLOps will continue to advance and

improve to keep pace with demands around automation,

scalability, robustness, and data privacy.

8.2.1. Edge and IoT Applications

MLOps practices are evolving to support distributed

learning across a network of edge devices. A major challenge

in this respect is model optimization, so they run on resource-

constrained devices efficiently. As chips evolve and

specialized chips become common, MLOps practices will

evolve to use newer hardware capabilities better. There will

also be a great focus on green MLOps, ensuring that systems

are energy efficient.

8.2.2. Federated Learning

Federated learning is a machine learning technique that

enables the training of models on distributed datasets without

the need for centralizing data. Since this does not require an

exchange of data from a client to some global service,

federated learning is helpful in reduced data transfers, privacy

preservation, and continuous learning. There are challenges

related to federated learning in terms of communication

efficiency and the management of fairness and bias that it

eventually needs to overcome.

8.2.3. AIOps and AutoML Integration

AIOps, or AI for Operations, and AutoML, or Automated

Machine Learning, are two major and fast-evolving areas in

machine learning. AIOps is, in simple words, adopting

Artificial Intelligence and Machine Learning to enhance and

automate operations, enhancing their efficiency, performance,

and general operations. For instance, models may find

anomalies in logs or metrics and trigger an alert or act

accordingly, as set. AutoML aims to automate the process of

applying machine learning to real-world problems by making

ML more accessible to non-ML experts and increasing ML

experts’ productivity. Automated feature engineering and

hyperparameter optimization are some good examples.

8.2.4. Ethical AI and Model Interpretability

Monitoring for fairness and bias and explaining model

outputs clearly will also be some of the core components of

MLOps in the future. An efficient MLOps framework can

handle data privacy and help with the secure transfer of data

so that there is no scope for mishandling.

8.3. Closing Remarks

MLOps will become fundamental in ensuring ML models

are more accessible, reliable, and useful. While the importance

of ML models is increasing daily, they should be updated

regularly based on variable customer trends. Building a

concrete foundation in MLOps will help teams innovate and

launch newer models safely. Automated solutions for testing,

training, and validations, coupled with advanced risk

mitigation and deployment techniques, position organizations

to accelerate growth without compromising customer

experience.

Conflicts of Interest

The author declares (s) that there is no conflict of interest

regarding the publication of this paper.

Koushik Balaji Venkatesan / IJCTT, 72(11), 165-171, 2024

171

References
[1] David Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” NIPS'15: Proceedings of the 28th International Conference

on Neural Information Processing Systems, vol. 2, pp. 2503-2511, 2015. [Google Scholar] [Publisher Link]

[2] Dev Kumar Chaudhary, Sandeep Srivastava, and Vikas Kumar, “A Review on Hidden Debts in Machine Learning Systems,” 2018 Second

International Conference on Green Computing and Internet of Things (ICGCIoT), Bangalore, India, pp. 619-624, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[3] Dominik Kreuzberger, Niklas Kuhl, and Sebastian Hirschl, “Machine Learning Operations (MLOps): Overview, Definition, and

Architecture,” IEEE Access, vol. 11, pp. 31866-31879, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Satvik Garg et al., “On Continuous Integration / Continuous Delivery for Automated Deployment of Machine Learning Models Using

MLOps,” 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA,

USA, pp. 25-28, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Matteo Testi et al., “MLOps: A Taxonomy and a Methodology,” IEEE Access, vol. 10, pp. 63606-63618, 2022, [CrossRef] [Google

Scholar] [Publisher Link]

[6] Georgios Symeonidis et al., “MLOps - Definitions, Tools and Challenges,” 2022 IEEE 12th Annual Computing and Communication

Workshop and Conference (CCWC), Las Vegas, NV, USA, pp. 453-460, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Meenu Mary John, Helena Holmstrom Olsson, and Jan Bosch, “Towards MLOps: A Framework and Maturity Model,” 2021 47th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Palermo, Italy, pp. 1-8, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[8] Antonio M. Burgueno-Romero et al., “Towards an Open-Source MLOps Architecture,” IEEE Software, vol. 42, no. 1, pp. 59-64, 2025.

[CrossRef] [Google Scholar] [Publisher Link]

[9] Yue Zho, Yue Yu, and Bo Ding, “Towards MLOps: A Case Study of ML Pipeline Platform,” 2020 International Conference on Artificial

Intelligence and Computer Engineering (ICAICE), Beijing, China, pp. 494-500, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] AWS, Serverless Computing - AWS Lambda, Run Code without Thinking about Servers or Clusters, Amazon Web Services, 2024.

[Online]. Available:

https://aws.amazon.com/pm/lambda/?gclid=EAIaIQobChMIsdOKmJOOigMV3KlmAh2A_S7bEAAYAiAAEgIQwvD_BwE&trk=5cc8

3e4b-8a6e-4976-92ff-

7a6198f2fe76&sc_channel=ps&ef_id=EAIaIQobChMIsdOKmJOOigMV3KlmAh2A_S7bEAAYAiAAEgIQwvD_BwE:G:s&s_kwcid=

AL!4422!3!651612776783!e!!g!!amazon%20web%20services%20lambda!19828229697!143940519541

[11] AWS, Amazon SageMaker Pipelines, Purpose-Built Service for Machine Learning Workflows, Amazon Web Services, 2024. [Online].

Available: https://aws.amazon.com/sagemaker/pipelines/

[12] DVC By Iterative, Data Version Control - and Much More - For the GenAI Era Free and Open Source, Forever. [Online]. Available:

https://dvc.org/

[13] MLflow, ML and GenAI Made Simple, Build Better Models and Generative AI Apps on a Unified, End-to-End, Open Source MLOps

Platform, 2024. [Online]. Available: https://mlflow.org/

[14] Docker, Develop Faster, Run Anywhere, Build With the #1 Most-Used Developer Tool, 2024. [Online]. Available:

https://www.docker.com/

[15] Kubernetes, Kubernetes, Also Known As K8s, is an Open Source System For Automating Deployment, Scaling, and Management of

Containerized Applications, 2024. [Online]. Available: https://kubernetes.io/

[16] AWS, Amazon CloudWatch Documentation, Amazon CloudWatch Provides a Reliable, Scalable, and Flexible Monitoring Solution That

You Can Start Using Within Minutes. You No Longer Need to Set Up, Manage, and Scale Your Own Monitoring Systems and

Infrastructure, 2024. [Online]. Available: https://docs.aws.amazon.com/cloudwatch/

[17] Prometheus, Prometheus is an Open-Source Systems Monitoring and Alerting Toolkit Originally Built at SoundCloud, 2024. [Online].

Available: https://prometheus.io/docs/introduction/overview/

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hidden+technical+debt+in+machine+learning+systems&btnG=
https://dl.acm.org/doi/10.5555/2969442.2969519
https://doi.org/10.1109/ICGCIoT.2018.8753081
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+on+Hidden+Debts+in+Machine+Learning+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8753081
https://doi.org/10.1109/ACCESS.2023.3262138
https://scholar.google.com/scholar?q=%22Machine+Learning+Operations+%28MLOps%29%3A+Overview%2C+Definition%2C+and+Architecture&hl=en&as_sdt=0%2C5&as_ylo=&as_yhi=
https://ieeexplore.ieee.org/abstract/document/10081336
https://doi.org/10.1109/AIKE52691.2021.00010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+Continuous+Integration+%2F+Continuous+Delivery+for+Automated+Deployment+of+Machine+Learning+Models+using+MLOps&btnG=
https://ieeexplore.ieee.org/abstract/document/9723793
https://doi.org/10.1109/ACCESS.2022.3181730
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MLOps%3A+A+Taxonomy+and+a+Methodology&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MLOps%3A+A+Taxonomy+and+a+Methodology&btnG=
https://ieeexplore.ieee.org/abstract/document/9792270
https://doi.org/10.1109/CCWC54503.2022.9720902
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MLOps+-+Definitions%2C+Tools+and+Challenges&btnG=
https://ieeexplore.ieee.org/abstract/document/9720902
https://doi.org/10.1109/SEAA53835.2021.00050
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+MLOps%3A+A+Framework+and+Maturity+Model&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+MLOps%3A+A+Framework+and+Maturity+Model&btnG=
https://ieeexplore.ieee.org/abstract/document/9582569
https://doi.org/10.1109/MS.2024.3421675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+an+open-source+MLOps+architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/10588954
https://doi.org/10.1109/ICAICE51518.2020.00102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+MLOps%3A+A+Case+Study+of+ML+Pipeline+Platform&btnG=
https://ieeexplore.ieee.org/abstract/document/9361315

